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ELECTRON CORRELATION VS PEIERLS DISTORTION IN POLYACETYLENE

K. A. CHAO and S. STAFSTROM
Department of Physics and Measurement Technology,
University of Linkdping, S-581 83 Link&ping, Sweden

Abstract A selfconsistent numerical approach, which allows
each (CH)-group in a finite polyacetylene chain to relax to
its equilibrium position, is used to investigate the cross-
over from the Peierls-gap to the electron-gap with increasing
intrasite electron-electron interaction. The dependence of
the crossover on the electron—-phonon coupling constant is
also examined.

The Peierls instability as a result of the electron—phonon inter-
action in a partially filled one-dimensional band! has been known
for a long time. On the other hand, the effect of electron—
electron interaction in quasi-one-dimensional systems, especially
the short-range interaction has been extensively investigated for
almost 20 years. The short range electron-electron interaction 1is
most commonly approximated by the simple Hubbard model where only
the intrasite Coulomb energy (the Hubbard U) is retained. Each of
the Peierls distortion (a dimerization) and the intrasite electron
correlation can create a gap in the single-particle energy spec-
trum. When both effects are present, it is important to find out
the consequence of their interplay. This is one of the major
interests in the recent studies on polyacetylene.

The early analysis of Ovchinnikov et al? reached a conclusion
that the gap in a polyene chain is the electron—-gap due to the
Hubbard U instead of the Peierls—-gap, which can not explain recent
experimental data. The unrestricted Hartree-Fock calculation® and
the perturbation treatment* on the Su-Schrieffer-Heeger (SSH)S
model show a transition from the Peierls—gap to the electron-gap
with increasing Hubbard U. Dixit and Mazumdar® have used a real
space approach to find the enhancement of the Peierls distortion
by U in the region U/W<l, where W is the w-band width. The Monte
Carlo study on a finite ring of 24 sites by Hirsch? also demons-
trates an initial enhancement of the Peierls distortion, followed
by a gradual crossover from the Peierls gap to the electron-gap.

Except the Monte Carlo calculation, all the other treatments
assume a frozen lattice constant when the electron-electron inter-
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action (Hubbard U) is varied as a free parameter. While this
additional degree of freedom is not important for a ring structure
(i.e., periodic boundary condition), it does play a non-negligible
role in reducing the total energy of the electron-phonon system if
the configuration is an open chain (i.e., free-ends boundary con-
dition). 1In real materials, the polyacetylene chains are open and
of finite lengths. In this report we will investigate the ground
state properties of an undoped polyacetylene with a selfconsistent
numerical method which allows each (CH)~group in the finite open
chain to relax to its equilibrium position.

We consider the SSH model with the electron correlation
"‘Z{t *a(u;-u, Y e +h.c.)+ l-(Z(u.—u. -C)2
io 0 Zi i1

i+l 1+1 o io +1

+ ZUn (L
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for a chaxn of N (CH)-groups and N electrons in the m-band. The
values of the parameters are estimated> as K=21 eV/42, t =2.5 eV,
o=4.1 eV/&, and C is determined from the condition that when U=0
and u;=0 for all i, H gives the ground state energy of an undis-
torted chain. The electron correlation term is simplified with
the broken-symmetry Hartree-Fock approximation by introducing the
symmetry-breaking spin-order parameters {);} such that

<njp>= (1+27)/2 5 <ngy>=(1-1;)/2 if i is even, (2)
anj>= (1-%;)/2 3 <ng>=(1+X;)/2  if i is odd. (3
Within this approximation, we.have
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The ground state of H can be derived with a selfconsistent
numerical method developed by us earlier.® Assuming the initial
values of the set of lattice displacements {u;} and set of order
parameters {}j}, the exact electronic eigenstates of H are derived
numerically., Then, knowing the electromic charge distribution, we
find a new set of {uj,A;} by minimizing the total energy with res-
pect to these parameters uj; and Aj. By iteration the final self-
consistent solution is obtained. If we define vi=c(uj- 1*1) and
y=a2/K then we need to solve the following coupled equations

H(ZcJc ch) = g, (z Jo ch §0=4,4; i=1,2,:+,N (5)
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where C'=CK/a, F(o) is the set of all occupied u-spin eigenstates
of H, and

= * *

z gc(tawk)je}rz(g)a(sk*l 3oPk50 PRy Bken 500 Vs %
= * ) x ‘ \. .

X kIc(t°+vk)jepz(a)a(Bk“ ,JGBkjc+BkjuBk+1 ’Jc)/a . (10)

The forms of Z and X are very complicated. It is convenient to
neglect the terms Z and X during the iteration process. The final
selfconsistent solution is the same whether we neglect X and Z,
because when the selfconsistence is reached we have Z=X=0 for the
system under equilibrium. Of course, when Z and X are droped we
need more iterations to achieve the same selfconsistent scolution.
In our calculation we have used a straight chain (with free-
ends boundary conditions) of 100 (CH)-groups so that the chain is
sufficiently long to yield reliable result. The total gap A as a

P a K - - |
1.5 ] ; U21
Uy 7\ L
As 5t Y2
1.0 -
\Bp
ool e |
Ag Ue
0.51 B 4
2k
] P
co ; 4 éu }Y1
0 T 0 T —r | I— —
U= 23 24 3.9 U 4.1 ) & U X,

FIGURE 1  Total gap A, Peierls gap 4, and electron gap 4, as
functions of U. Inset is the ground state phase diagram.

function of U in units of eV is shown in column P of Fig. 1. Using
the so—obtained values of {u;} and setting U=0, we can recalculate
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the eigenenergies spectrum of H and then derive the pure Peierls-
gap A_. On the other hand, we can set all uj=0 to calculate the
electgonic gap A,. Both A, and A, are also shown in column P of
Fig. 1. The crossover from the Peierls-gap to the electronic-gap
occurs around U=2,3 eV, Let us remind ourselves that the w-band
width is about 10 eV. Since A, and A, are calculated in a decou-
pled manner, A, +Ao is slightly less than the total gap A. For the
pure SSH model the dimerization order parameter £ is linear in Aj.
Therefore, the shape of £ vs U is the same as A, vs U. Further-
more, the analytical expression connecting A, and the spin-order
parameter A can be easily derived. Hence, we will not show the
functional dependence of A on U in Fig. 1.

To study the effect of electron-phonon coupling strength a on
the critical value of U (denoted by U;) around which the crossover
occurs, we have repeated the calculation for different values of
a. In order to save the computer time, we have used a ring of 40
(CH)-group, For a=6 the gaps A, A, and A, are plotted in column Q
and their general structures are similar to those in colume P. We
notice that with increasing a the transition region (i.e. the mix-
phase between Uy and U,) gets wider. The shape of A is shown in
column R for various values of a with the axes specified as (X,
X23Y1,Y5)=(3.9,4.1;5.4,5.8) for a=6, (2.95,3.15;2.7,3.1) for a=5,
(2.02,2.22;0.75,1.15) for a=4, and (1.29,1.49;-0.06,0.34) for a=3.
The ground state phase diagram is illustrated by the inset, where
H marks the antiferromagnetic phase (with pure electronic-gap)
and P marks the dimerized phase (with pure Peierls-gap). Results
in Fig. 1 agree qualitatively with those derived by other authors,
except the curvature of the phase boundary. Our phase boundary is
concave while the phase boundary obtained by Kivelson and Heim* is
convex. This difference is due to the fact that different values
of the effective spring constant K are used in two calculations,
as can be checked with Eq. (13) of Ref. 4.
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