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ELECTRON CORRELATION VS PEIERLS DISTORTION IN POLYACETYLENE 

K. A. CHAO and S .  STAFSTROM 
Department of Physics and Measurement Technology, 
University of Linktiping, S-581 83 Linkoping, Sweden 

Abstract A selfconsistent numerical approach, which allows 
each (CH)-group in a finite polyacetylene chain to relax to 
its equilibrium position, is used to investigate the cross- 
over from the Peierls-gap to the electron-gap with increasing 
intrasite electron-electron interaction. The dependence of 
the crossover on the electron-phonon coupling constant is 
also examined. 

The Peierls instability as a result of the electron-phonon inter- 
action in a partially filled one-dimensional bandl has been known 
for a long time. On the other hand, the effect of electron- 
electron interaction in quasi-one-dimensional systems, especially 
the short-range interaction has been extensively investigated for 
almost 20 years. The short range electron-electron interaction is 
most commonly approximated by the simple Hubbard model where only 
the intrasite Coulomb energy (the Hubbard U) is retained. Each of 
the Peierls distortion (a dimerization) and the intrasite electron 
correlation can create a gap in the single-particle energy spec- 
trum. When both effects are present, it is important to find out 
the consequence of their interplay. This is one of the major 
interests in the recent studies on polyacetylene. 

The early analysis of Ovchinnikov et a12 reached a conclusion 
that the gap in a polyene chain is the electron-gap due to the 
Hubbard U instead of the Peierls-gap, which can not explain recent 
experimental data. The unrestricted Hartree-Fock calculation3 and 
the perturbation treatment4 on the Su-Schrieffer-Heeger (SSH) 
model show a transition from the Peierls-gap to the electron-gap 
with increasing Hubbard U. Dixit and Mazumdar6 have used a real 
space approach to find the enhancement of the Peierls distortion 
by U in the region U/W<l, where W is the a-band width. The Monte 
Carlo study on a finite ring of 24 sites by Hirsch’ also demons- 
trates an initial enhancement of the Peierls distortion, followed 
by a gradual crossover from the Peierls gap to the electron-gap. 

Except the Monte Carlo calculation, all the other treatments 
assume a frozen lattice constant when the electron-electron inter- 
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46 K. A .  CHAO AND s. STAFSTROM 

action (Hubbard U) is varied as a free parameter. While this 
additional degree of freedom is not important for a ring structure 
(i.e., periodic boundary condition), it does play a non-negligible 
role in reducing the total energy of the electron-phonon system if 
the configuration is an open chain (i.e., free-ends boundary con- 
dition). In real materials, the polyacetylene chains are open and 
of finite lengths. In this report we will investigate the ground 
state properties of an undoped polyacetylene with a selfconsistent 
numerical method which allows each (CH)-group in the finite open 
chain to relax to its equilibrium position. 

We consider the SSH model with the electron correlation 

for a chain of N (CH)-groups and N electrons in the n-band. The 
values of t h e  parameters are estimated5 as K=21 eV/A2, t0=2.5 eV, 
a=4.1 ev/A, and C is determined from the condition that when U=O 
and ui=O for all i, H gives the ground state energy of an undis- 
torted chain. The electron correlation term is simplified with 
the broken-symmetry Hartree-Fock approximation by introducing the 
symmetry-breaking spin-order parameters {Xi) such that 

(I+ Xi)/2 ; enif>= (1- Xi)/2 if i is even, (2) 
<"is.>= (1- Xi)/2 ; <ni+>= (1+ Xi)/2 if i is odd. ( 3 )  
Within this approximation, we.have 

The ground state of H can be derived with a selfconsistent 
numerical method developed by us earlier.e Assuming the initial 
values of the set of lattice displacements {u;) and set of order 
parameters {xi}, the exact electronic eigenstates of H are derived 
numerically. Then, knowing the electronic charge distribution, we 
find a new set of {ui,Xi} by minimizing the total energy with res- 
pect to these parameters ui and Xi. 
consistent solution is obtained. 
y=a2/K then we need to solve the following coupled equations 

By iteration the final self- 
If we define vi=a(ui-ui+l) and 

(6) 
2 xi 1 - 1 ~ B ~ ~ + I  + ~ X / U  ;if i is even , 

EEF(+) kEF(+) 

( 7 )  
2 A i 5  1 IBki+I2 - 1 IBLi4( + 2X/U ;if i is odd , 

kEF (+) 9XF ( 4) D
ow

nl
oa

de
d 

by
 [

T
om

sk
 S

ta
te

 U
ni

ve
rs

ity
 o

f 
C

on
tr

ol
 S

ys
te

m
s 

an
d 

R
ad

io
] 

at
 1

2:
45

 2
0 

Fe
br

ua
ry

 2
01

3 



ELECTRON CORRELATION VS PEIERLS DISTORTION IN POLYACETY LENE 41 

where C'=CK/a, F(o) is the set of all occupied o-spin eigenstates 
of H, and 

The forms of 2 and X are very complicated. It is convenient to 
neglect the terms 2 and X during the iteration process. 
selfconsistent solution is the same whether we neglect X and 2, 
because when the selfconsistence is reached we have Z=X=O for the 
system under equilibrium. 
need more iterations to achieve the same selfconsistent solution. 

In our calculation we have used a straight chain (with free- 
ends boundary conditions) of 100 (CH)-groups so that the chain is 
sufficiently long to yield reliable result. The total gap A as a 

The final 

Of course, when Z and X are droped we 

1.5 

1.0 

0.5 

0 
U- 2.3 2.4 3.9 u 4.1 x, 

FIGURE 1 Total gap A y  Peierls gap Ap and electron gap A, as 
functions of U. Inset is the ground state phase diagram. 

function of U in units of eV is shown in column P of Fig. 1. Using 
the so-obtained values of {ui} and setting U=O, we can recalculate 
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48 K. A. CHAO AND s. STAFSTROM 

the eigenenergies spectrum of H and then derive the pure Peierls- 
gap A . On the other hand, we can set all ui=O to calculate the 
electfonic gap A,. and A, are also shown in column P of 
Fig. 1. The crossover from the Peierls-gap to the electronic-gap 
occurs around W2.3 eV. Let us remind ourselves that the n-band 
width is about 10 eV. Since Ap and Ae are calculated in a decou- 
pled manner, Ap+Ae is slightly less than the total gap A. For the 
pure SSH model the dimerization order parameter 5 is linear in Ape 
Therefore, the shape of 5 vs U is the same as Ap vs U. Further- 
more, the analytical expression connecting A, and the spin-order 
parameter X can be easily derived. 
functional dependence of X on U in Fig. 1. 

To study the effect of electron-phonon coupling strength a on 
the critical value of U (denoted by Uc) around which the crossover 
occurs, we have repeated the calculation for different values of 
a .  
(CH)-group. For am6 the gaps A, Ap and A, are plotted in column Q 
and their general structures are similar to those in colume P. We 
notice that with increasing a the transition region (i.e. the mix- 
phase between U1 and U2) gets wider. The shape of A is shown in 
column R for various values of a with the axes specified as (Xi, 
X2;Y1,Y2)=(3.9,4.1;5.4,5.8) for u=6, (2.95,3.15;2.7,3.1) for a=5, 
(2.02,2.22;0.75,1.15) for ap4, and (1.29,1.49;-0.06,0.34) for u=3. 
The ground state phase diagram is illustrated by the inset, where 
H marks 
and P marks the dimerized phase (with pure Peierls-gap). Results 
in Fig. 1 agree qualitatively with those derived by other authors, 
except the curvature of the phase boundary. Our phase boundar 
concave while the phase boundary obtained by Kivelson and Heim 
convex. This difference is due to the fact that different values 
of the effective spring constant K are used in two calculations, 
as can be checked with Eq. (13) of Ref. 4. 

Both A P 

Hence, we will not show the 

In order to save the computer time, we have used a ring of 40 

the antiferromagnetic phase (with pure electronic-gap) 

z ;: 
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